

Chris Kidd¹ Ralph Ferraro, Joe Turk, Vincenzo Levizanni, Peter Bauer & Arnie Gruber ¹School of Geography, Earth and Env. Sciences, University of Birmingham, UK

Outline

- UK perspectives
 - international/national/regional contexts
 - examples: Cloudsat & 20th July 2007
- IPWG activities
 - Synergies between IPWG/PERHPP and GPM-GV
- Current AMSR retrievals
 - AMSR rain retrievals
 - Gauge/radar comparisons
- Conclusions

UK multi-level approach

International framework ~2.1m km² (+)

- European radar, 5 km/15 minute, gauge

National network (UK) ~700000 km²

- UK radar network 16 DP/D radars, 5 km/15 minute
- Gauges ~10km spacing, ~2000 hourly/6000 daily

Regional validation (UK) ~31000 km²

- Single radars: 2 km/5 minute, + gauges

Physical validation (15000 km²)

- Chilbolton radar + associated instrumentation
- Facility for Airborne Atmospheric Measurements (FAAM)
- Micro rain radars (Doppler DSDs)

International framework

Current European radar network – used in IPWG

Negotiations starting on obtaining pan-European radar data sets

UK context

Weather:

- Dominated by frontal systems
- OccasionalMCSs in summer
- Occasional snow/blizzards in winter
- Low-level precip.
 common

National network

Gauges:

~6000 daily *(UKMO)*

~2000 TBRs (water companies) (~40 gauges/deg)

Regional Validation

Clee Hill radar
100km radius
2 km/5 min

Cloudsat tracks

Cloudsat Profiles

20 July 2007 event

Analysis of July 2007 storms

Significant rain fell over central England – up to 154mm in 12hr No associated lightning activity (daytime temperatures ~13°C) Rain rates 10-20mmh⁻¹ over 8 hours: over 2 billion tonnes of water Widespread surface flooding (not fluvial)

Micro Rain Radar

Reflectivity: 20th July 2007

Micro Rain Radar

Fall velocity: 20th July 2007

IPWG Inter-comparison regions

Near real-time inter-comparison of model & satellite estimates vs radar/gauge

IPWG/PEHRPP context

IPWG

- 3 'original' validation centres: Australia, Europe and the US
- South America, Japan, South Africa, Ethiopia, India, Korea ... and growing
- Baseline comparisons at 0.25 degree/daily resolutions
- Validation/verification through gauge and/or radar
- Near real-time user generation of products and subsequent inter-comparisons.

PEHRPP

- As above, but 3-hourly estimates at 0.25 degree
- Primarily multi-satellite products

GPM-PEHRPP/IPWG synergies

Criteria	Satellite validation program	PEHRPP
Type of validation	Priority on physical, also statistical	Has been focused on statistical
Source of validation data	Arranged for and collected by principle investigators	Doesn't request. IPWG participants free to contribute their own
Source of observational data	Specific satellite-based products	IPWG participants provide products directly to validation groups
Types of Validation data	Gauge and/or radars, diverse in location	Conventional gauge and/or radar networks, usually part of a national network
Types of observational data	Typically single-sensor datasets, instantaneous, full-resolution	Blended satellite sensor products, time/area averaged.

PEHRPP activities

Geneva Meeting (3-5 December 2007)
Recommendation for a HRPP inter-comparison project

Rationale:

10 years since last AIP/PIP; vast improvements, new techniques & sensors; new multi-sensor techniques (with different components)

Methodology:

3 hourly, 0.25 degree estimates, 2004-2007; main validation centres, but all data available to all – encouragement of other validation regions

Logistics:

Completion by 2010; Funding? Maybe instantaneous too?

AMSR instantaneous: Europe

AMSR vs radar (instantaneous)

3 months of data: 20 August 2007 to 20 November 2007

Radar & gauge data

- a bad day...

Radar vs Gauge correlations

Radar is calibrated using gauge data – even so, cc's rarely exceed 0.9

Conclusions

Precipitation occurrence

 Mid-latitude precipitation is common (Petty 1996, Cloudsat, etc): a good mid/high-latitude oceanic validation site is still needed (Shetlands?)

IPWG

 IPWG validation regions should exploited for precipitation comparisons & adapted for instantaneous studies where possible

Multiple-truths & redundancy

 Validation requires more than a single source of 'truth', not least for consistency checks

Multi-sensor/blended algorithms

• Evaluation of current <u>component</u> **and** <u>combined</u> algorithms essential to *'see where we are'* – system, intensity, seasonal dependency...

Development/use of new statistical techniques

Better comparative statistics that are meaningful, but also understandable

Future meetings

1-3 April 2008: Second IPWG Snowfall Workshop, Steamboat Springs, CO USA

13-17 October 2008: Fourth IPWG Workshop, Beijing, China

Web Page: http://www.isac.cnr.it/~ipwg/IPWG.html